Plant Nutrients Come from Both Inorganic and Organic Sources

PHOSPHATE FURNACE SLAG vs. LIMESTONE A 10-Year Lysimeter Study of Soil Liming

W. H. MacINTIRE and A. J. STERGES

The University of Tennessee Agricultural Experiment Station, Knoxville, Tenn.

A study was made of the behavior and effect of a phosphate furnace slag after incorporation in the soil and as a possible hazardous source of fluorides in adjacent ground waters. Incorporated slag underwent transition to calcium carbonate, large quantities of which were accounted for as bicarbonate outgo and as cumulative residues. Calcium outgo from the slag, at different input rates and various fineness, exceeded outgo from corresponding inputs of limestone and caused repressions in outgo of magnesium and potassium. Solute outgo from upper-zone incorporations was less than that from fulldepth incorporations. Effect of particle size upon outgo was decidedly less for slag than for limestone. The proportions for outgo of calcium were greater in the initial 5 years. The concentrations of fluorides into drainage were attributable to leachings of calcium silicofluoride. The slag proved decidedly more reactive than the limestone, while releasing relatively large amounts of fluoride, passage of which was impeded during drainage through lower strata. Apparently, use of the phosphate furnace slag will not cause detrimental concentrations of fluorides in nearby ground waters.

NALCIUM SILICATE SLAGS are used in \checkmark several states for soil liming. They are decidedly different from basic slag, which is classified as a phosphatic fertilizer (1), not as a "liming material." Calcium silicate slags of different origin are also distinctive among themselves as to composition, structure, and liming value. Steel industry slags contain appreciable contents of manganese, sulfur (11), and magnesium and nugatory percentages of phosphorus and fluorine, whereas electric furnace slags carry appreciable quantities of phosphorus and fluorine. Air-cooled phosphate furnace slags are crystalline and dense, but the quenching of the molten slag results in a pitted glass that does not give an x-ray pattern (5). The quenched slag of the experiment reported here was from the electric furnace operations at Wilson Dam and was derived from charges that comprised washed brown rock phosphate, quartz, and coke.

Previous Observations

Composition, characteristics, and effectiveness of the slag as a liming material, and its attendant influence upon plant growth and composition have been reported (6, 10, 12-15). But where charges of unwashed brown rock phosphate or "matrix" were used in an industrial operation of the electric furnace, the resultant slag proved virtually devoid of liming value and hence enormous quantities of calcium and large amounts of included phosphorus of potential fertilizer value are locked within gigantic piles of relatively inert slag.

After slag is incorporated, its silicate content undergoes hydrolysis into calcium hydroxide, which reacts with the acidoids and carbon dioxide of the soil

(6). A distinctive property of the slag is that suspensions of it in carbon dioxideimpregnated water impart calcium bicarbonate concentrations far beyond those resultant from similar suspensions of calcium carbonate in any form (7, 14). Moreover, fluorine of the slag proved far more dissoluble than fluorine of either fluorspar or precipitated calcium fluoride in laboratory extractions (5), or lysimeter drainage waters (9). Because of the ready release of the slag-contained fluorine to aqueous systems, it became important to ascertain whether that release would affect uptake of fluorine by vegetation (13) and impart high concentrations of fluorides to ground waters.

Objectives

The lysimeter study was inaugurated to determine the behavior of, and effects induced by, incorporations of an electric

Figure 1. Installation of lysimeters Rain-water drainages pass into building at right

furnace slag of three particle sizes, at three rates, on two soils. Migrations of calcium and concomitant ions in rainwater drainage from the inputs of slag and limestone controls were used to compare the effects of particle size, to compare single vs. repetitive incorporations, to establish ratios between total and bicarbonate leachings, and to differentiate between conservation of calcium from upper-half and full-depth incorporations. The findings for outgo of calcium and other components were to be supplemented by determinations of the residues of carbonates from those engendered. A major consideration was to determine the occurrence of fluorine in the drainage waters from the variously slagged soils, and whether the repetitive incorporations of the slag at rational rates and single heavy-rate inputs would impart a harmful concentration of fluorine to immediate ground waters.

Experimental Work

The quenched slag con-Limestone tained 52.7% calcium oxide, 34.9% silica, 1.25% phos-Slag and phorus pentoxide, 0.29% sulfide sulfur (18), 0.23% of potassium oxide, and 3.20% of fluorine, and had a neutralization value equivalent to an 84% limestone (17). The "4-mesh" slag comprised 99% of 10-mesh, 74% of 20-mesh, and 16% of 60-mesh screenings. The 4mesh, 20-mesh, and 100-mesh separates were incorporated as being equivalent to calcium carbonate inputs of 2 tons: four annuals of 2 tons each; 5 tons: four annuals of 5 tons each; and 20 tons, all in relation to 2,000,000 pounds of soil, moisture-free basis, as in Tables III and IV. A limestone of 98.5% calcium carbonate content was used in corresponding make-up as a control for each input of slag.

The Hartsells fine sandy Soils and loam and the Baxter silt Procedures loam used were acidic (19). Their exchange capacities were similar (Table II), but their physical characteristics were different. Seventeen 100-pound charges of each soil, moisture-free basis, were placed upon quartz beds in asphaltum-coated ingot iron lysimeters of 12-inch depth and 1/20,000-acre area. The rain-water drainages passed directly into asphaltumcoated metal containers in the lysimeter building (Figures 1 and 2).

With the exception noted as to group 6, initial and annual inputs were incorporated full depth. The once-slagged soils of groups 1 and 3 were worked up in parallel with the soils of groups 2 and 4, which received additional incorporations. The soils of group 5 were not disturbed after the single incorporations of 100mesh separates of slag and limestone. The incorporations of 100-mesh slag in the undisturbed units of group 6 were restricted to the upper half of each soil.

Procedures prescribed by the Association of Official Agricultural Chemists (1) were used in the analyses of rain waters and annual composites of the periodic collections of rain-water drainages.

Findings

Compositions of the ten **Rain Waters** annual composites of the rain waters caught in the lysimeter "blanks" are reported in Table I. The largest washdown was that of sulfur, as in previous collections that were obtained at several points in Tennessee (16). All

Table I. Increments Carried by Rain Waters Collected at Knoxville Lysimeters, 1940-50

	Rain Wo	aters		Con	nponents B		Soil,	
	Inches per		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Pounds	per Acre		+ 4 - 2 + 4 - 1
Period	annum	pН	Caa	Mg^a	SO4	К	Р	N
1940-41	31.85		95	22	133	9		
1941-42	41.06		93	25	163	12		
1942-43	57.88	7.4	130	25	143	7	0.1	8
1943-44	51.19	7.1	115	19	123	9	0.2	7
1944-45	55.60	7.1	108	19	153	9	0.1	6
1945-46	53.81	6.9	123	22	173	6	0.1	6
1946-47	50.98	7.7	138	25	163	7	0.1	2
1947-48	42.69	6.7	98	31	234	16	0.3	6
1948-49	56.57	7.0	90	38	158	15	0.8	9
1949–50	62.60	6.7	100	31	95	14	0.6	4
10-year total	504.23		1090	257	1538	104	2.36	486
Average annual	50.4		109	26	154	10	0.3	6

^a Expressed as CaCO₃ equivalence.

^b Computed from 8 to 10 years.

Exchangeable Bases" and pH for Hartsells Fine Sandy Loam and Table II. Baxter Silt Loam Controls before and after 10-Year Rain-Water Leachings

	Hartsells Fine S	Sandy Loam, Meg.	Baxter Silt Loam, Meq.					
Base	Initially	After 10 years	Initially	After 10 years				
Calcium	1.68	0.88	1.48	1.10				
Magnesium	0.25	0.15	0.36	0.19				
Potassium	0.13	0.09	0.14	0.09				
Hydrogen ^b	4.39	3.91	3.97	3.70				
Exchange capacity ^c	6.45	5.03	5.95	5.08				
pH	5.0	5.2	5.2	5.4				
CO ₃	0.0	0.0	0.0	0.0				

^a Millequivalents per 100 grams of dry soil. ^b Difference between sum of Ca, Mg, and K and exchange capacity (19).

^c Obtained by ammonium acetate extraction at pH 7.0.

collections of rain waters of the earlier and present experiments were slightly alkaline, probably because of occurrence of smoke-borne silicates and limestone road dust in the atmosphere. Consideration of the occurrences of calcium, magnesium, potassium, and sulfate in the rain waters is primarily for comparisons with corresponding derivations in the drainage from the untreated soils.

The "after 10 years" values of Table II integrate the effect of

the leachings from the systems native to the two soils and passages of the increments of cations and ions that the rainwaters brought to the soils. The 10year rainfall of 504 inches caused both control soils to suffer significant diminutions in their contents of exchangeable calcium, magnesium, potassium, and hydrogen, with resultant decreases in exchange capacity and slight elevations in pH values. The control soils were devoid of determinable carbonate content, initially and finally.

Calcium Outgo

The chemical fate of the calcium of incorporated liming materials is governed

 Table III.
 Calcium Outgo in 10-Year Rain-Water Leachings from Equivalent Incorporations of Limestone and Slag in Hartsells Fine Sandy Loam

	Incorporations ^a Sup Materials Mesh Tons N				Annual Outgo, Pounds CaCO3 Equivalence per Acre, 2,000,000 Pounds of Soil										Outgo	
Group	Materials	Mesh	Tons	No.	1	2	3	4	5	6	7	8	9	10	Totol	Increase ^b
	None				281	361	220	226	173	135	117	141	159	193	2006	918°
1	Limestone Slag Limestone	20 20 100	2 2 2	1 1 1	636 574 724	808 809 853	442 450 437	524 541 486	300 231 376	278 310 293	211 220 230	258 261 253	260 289 293	255 315 323	3972 4090 4268	1966 2084 2262
2	Slag Limestone Slag Limestone Slag	100 20 20 100 100	2 2 2 2 2	1 4 4 4 4	660 575 627 721 668	772 1313 1373 1501 1565	450 984 1562 948 2052	490 1064 2012 1362 1977	338 801 1249 885 1307	289 666 1072 829 1045	234 566 783 674 770	295 512 727 649 646	291 656 783 771 701	302 770 804 887 723	4121 7907 10992 9227 11454	2115 5901 8986 7221 9448
3	Limestone Slag	4 4	5 5	1 1	818 789	1255 1405	850 945	930 720	597 561	516 522	414 430	407 448	465 506	541 454	6793 6780	4787 4774
4	Limestone Slag	4 4	5 5	4 4	781 833	1465 2312	1034 1876	1175 1992	830 1346	790 1452	595 1229	664 1146	762 1346	869 1527	8965 15059	6959 13053
5	Limestone Slag	100 100	$rac{20^d}{20^d}$	1 1	1216 1274	1262 1849	930 1576	1024 1722	804 1263	813 1180	710 830	643 766	770 1079	922 1173	9094 12712	7088 10706
6	Slag Slag	100 100	$\frac{20^{d}}{10^{d}}$	1 1	626 660	758 752	744 626	934 837	804 686	964 743	776 567	806 636	1075 827	1206 961	8693 7295	6687 5289
	Rainfall, in	ches			31.85	41.06	57.88	51.19	55.60	53.81	50.98	42.69	56.57	62.60	504.23	

^a Basis of CaCO₃ equivalence. Full-depth incorporations for groups 1-5; half-depth for group 6.

^b Net losses in relation to controls.

e Net loss from untreated soil, or difference between outgo and increment from rain waters, 918 pounds.

^d Soil undisturbed during 10 years.

Table IV.	Calcium Outgo in 10-Year Rain-Water Leachings from Equivalent Incorporations of
	Limestone and Slag in Baxter Silt Loam

	Inco	rporatio	15 ^a			Annua	l Outgo,	Pounds C	aCO ₃ Eq	uivalence	per Acre,	2,000,0	00 Pound	ls of Soil		Outgo
Group	Materials	Mesh	Tons	No,	1	2	3	4	5	6	7	8	9	10	Total	Increase ^b
	None		.		270	305	195	269	208	150	130	137	150	171	1985	8 97¢
1	Limestone	20	2	1	590	845	421	516	353	289	247	248	279	299	4087	2102
	Slag	20	2	1	592	821	389	508	336	287	254	268	311	301	4067	2082
	Limestone	100	2	1	678	852	342	508	349	288	237	260	300	292	4106	2121
	Slag	100	2	1	639	709	492	547	361	316	249	273	314	316	4216	2231
2	Limestone	20	2	4	573	1225	738	1128	905	696	611	629	701	816	8002	6017
	Slag	20	2	4	607	1184	1209	1741	1247	994	773	764	830	918	10267	8282
	Limestone	100	2	4	666	1163	1023	1073	1010	733	659	618	712	969	8626	6641
	Slag	100	2	4	618	1722	1643	1755	1243	1071	783	677	678	860	11050	9065
3	Limestone	4	5	1	725	1100	656	913	601	530	446	404	538	651	6564	4579
	Slag	4	5	1	928	1278	871	827	755	518	449	412	547	618	7203	5218
-+	Limestone	4	5	4	693	1218	830	1000	862	760	577	670	734	911	8355	6370
	Slag	4	5	4	917	1439	1228	1697	1469	1253	1012	991	1157	1376	12539	10554
5	Limestone	100	20^d	1	1024	1220	925	909	846	676	581	612	723	879	8415	6430
	Slag	100	20^d	1	1397	1608	1228	1537	1211	1058	942	753	1001	1299	12034	10049
6	Slag	100	20ª	1	444	607	618	883	833	823	759	715	894	1187	7763	5778
	Slag	100	10^d	1	533	392	441	644	653	739	704	614	804	1012	6536	4551
	Rainfall, in	ches			31,85	41,06	57,88	51.19	55.60	53.81	50,98	42.69	56.57	62,60	504.23	

^a Basis of CaCO₃ equivalence. Full-depth incorporations for groups 1-5; half-depth for group 6.

^b Net losses in relation to controls.

° Net loss from untreated soil, or difference between outgo and increment from rain waters, 897 pounds.

^d Soil undisturbed during 10 years.

by several factors—exchange for the hydrogen of soil acidoids; outgo as bicarbonate, nitrate, and sulfate; uptake by vegetation; and probable crystallization and geochemical aging of engendered calcium complexes. Obviously, the outgo from a limed soil under fallow will be governed by the nature of the liming material. by its particle size, by rate and depth of incorporations. by seasonal effects, by bacteriological activities, and by the quantity and periodicity of rainfall.

Yearly and 10-year totals and "outgo increases" of calcium from the Hartsells and Baxter soils are given in Tables III and IV. The calcium carbonate-equivalent mean of the annual leachings of calcium from each untreated soil was close to 90 pounds more than the corresponding mean for rain-water increments.

In every case of outgo from single incorporations of full depth-groups 1, 3, and 5 for both soils--the maximal occurred in the second year. Increases in total outgo from the 2-ton incorporations of the 20- and 100-mesh limestone and slag (group 1) were comparable for the two soils and were close to one half of the inputs. Calcium leachings from the repetitive 4 \times 2 ton inputs of slag (group 2, four annual 2-ton inputs) were substantially greater than those from the control inputs of limestone. In comparison against the near-constant outgo from 2-ton inputs of the two liming materials, the increases in calcium outgo from the four successive incorporations of 2 tons per annum in group 2 were three to one

for the limestone and four to one for the slag in both soils.

Increases in calcium outgo from the 5-ton incorporations of 4-mesh slag and limestone in the two soils (group 3, Tables III and IV) were close to equivalences of 2.5 tons of calcium carbonate. The four 5-ton-per-annum inputs of the 4-mesh limestone (group 4) caused 10-year outgo increases of more than 3 tons of calcium carbonate per acre from both soils, but the mean of those increases was only 47% of the mean of the increases from the slag.

Maximal increase in outgo of calcium came from the four 5-ton annual incorporations of the 4-mesh slag in both soils, and in every case outgo from both 4mesh materials was largest in the second year, group 4. The next largest totals were those from the 20-ton incorporations of 100-mesh slag in the undisturbed soils (group 5, Tables III and IV). In the first year the largest outgo from the six groups of both soils was from the 20-ton incorporations of slag in those groups, and in subsequent years the losses of calcium from the slagged soils of those groups were far greater than the losses from the corresponding limestoned soils.

The 20-ton full-depth incorporations of 100-mesh materials in groups 5 and 6 of Tables III and IV were not disturbed throughout the 10 years of the lysimeter experiment. After the initial year, leachings of calcium from the 20-ton input of slag exceeded the outgo from the related 10-ton inputs, but the increases in outgo were not proportionate to input. The substantial difference between the leachings of calcium from fulldepth and half-depth incorporation may be accounted for in part by a greater degree of carbonate conversion of the silicate to carbonate in the full depth of soil and by some retention of the calcium solutes during their passage through the lower unslagged zone.

By 5-Year Periods. Frequently, it is necessary to consider the proper interval between an initial liming and a second one. Recorded for both soils in Table V are total and net passages as pounds of calcium carbonate equivalence per acre and as percentage of input for the initial and second 5 years, as results of rainfall means of 48 and 53 inches. The passages of calcium from the single 2-ton incorporations in both soils were in the range of 35 to 40% of input in the first 5 years and about 16% in the second 5 years. Passages from the four annual 2ton incorporations of both liming materials exceeded greatly the corresponding losses from the single 2-ton incorporations in the first 5 years, but percentage losses from the slag were somewhat similar for the two periods. In both 5-year intervals the largest increases in outgo of calcium were those from the 20-ton incorporations of slag in groups 4, 5, and 6 of both soils.

In most cases net outgo of calcium from a full-depth input of a liming material was smaller in the second 5 years, as in groups 1 to 5 for both soils. The reverse was true for half-depth incorporations of both liming materials in both

Table V. Calcium Outgo in First and Second 5 Years from Equivalent Incorporations of Limestone and Slag in Two Soils

						From I	Hartsells F			Equivalen				r Silt Loai	 ກ	
					F	irst 5 Yea	rs	Sec	ond 5 Ye	ars	Fi	rst 5 Yea	rs	Sec	and 5 Ye	ars
							Net			Net			Vet		1	Net
Group	Inc Materials	orporati Mesh	ons ^a Tons	No.	Total Ib.	<i>L</i> Ь.	% of input	Total Ib.	<i>L</i> Ь.	% of input	Total Ib.	ιь.	% of input	Total Ib.	<i>L</i> Ь.	% of input
	None				1261			745			1247			738	• • •	
1	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	1 1 1 1	2710 2695 2876 2710	1449 1434 1615 1449	36 36 40 36	1262 1395 1392 1411	517 650 647 666	13 16 16 17	2725 2646 2729 2748	1478 1399 1482 1501	37 35 37 38	1362 1421 1377 1468	624 683 639 730	16 17 16 18
2	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	4 4 4	4737 6823 5417 7569	3476 5562 4156 6308	22 35 26 39	3170 4169 3810 3885	2425 3424 3065 3140	15 21 19 20	4569 5988 4935 6981	3322 4741 3688 5734	21 30 23 36	3433 4279 3691 4069	2695 3541 2953 3331	17 22 18 21
3	Limestone Slag	4 4	5 5	1 1	4450 4420	3189 3159	32 32	2343 2360	1598 1615	16 16	3995 4659	2748 3412	27 34	2569 2634	1831 1896	18 19
4	Limestone Slag	4 4	5 5	4 4	5285 8359	4024 7098	10 18	3680 6700	2935 5955	15 29	4703 6750	3456 5503	9 14	3652 5789	2914 5051	7 13
5	Limestone Slag	100 100	$\frac{20^{b}}{20^{b}}$	1 1	5236 7684	3975 6423	10 16	3858 5038	3113 4293	8 11	4924 6981	3677 5732	9 14	3491 5053	2753 4315	7 11
6	Slag Slag	100 100	$\frac{20^{b}}{10^{b}}$	1 1	3866 3561	2605 2300	7 12	4827 3734	4082 2989	10 15	3385 2663	2138 1416	5 7	4378 3873	3640 3135	9 16
	Rainfall, ind		241.67				266.65		241.67			266.65				

^a In $CaCO_3$ equivalence. Full-depth incorporations for groups 1-5; half-depth for group 6.

^b Soil undisturbed during 10 years.

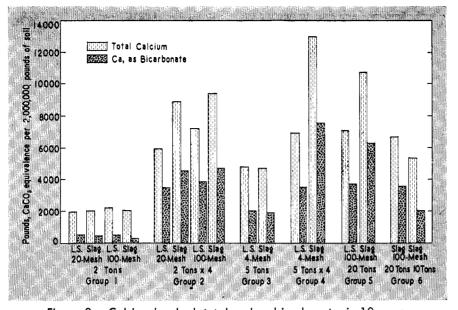


Figure 2. Calcium leached, total and as bicarbonate, in 10 years From equivalent incorporations of silicote slag and limestone in Hartsells fine sandy loam. Full depth in groups 1–5; half depth in group 6

soils. In both 5-year periods, calcium outgo from the 20-ton incorporation of slag in the upper half of soil was decidedly less than the outgo of calcium from the corresponding full-depth incorporations.

Net outgo of calcium from the two fallow soils might have been considerably different had the soils been cropped in the two 5-year periods. Biological activities would have caused increases in the calcium content of free water in the soils. but those increases would have been diminished through uptake by the vegetation, and the quantity of the drainage and concentration of its solutes would be lessened. Incorporations of liming materials at rates beyond 2 tons of calcium carbonate equivalence per acre are likely to increase the calcium content of drainage waters and cause wastage of calcium from soils of the types under study.

The increases in calcium outgo were expressed as though they were derived entirely from the additive materials. However, through use of radioactive calcium-45 as a component of calcium carbonate incorporations in two soils, it was found that enhancement in the calcium content of rain-water drainage from a limed soil may come partly from native supplies and that outgo of calcium from those supplies in a particular soil may be diminished or increased through variation in the rate of calcium input (2, 3).

Bicarbonate leachings from the slagged and limestoned Hartsells and Baxter soils are reported in Tables VI and VII. Each net increase in 10-year passage of bicarbonates is designated "outgo increase." Although the two rock-derived soils are decidedly acidic and devoid of determinable contents of carbonates, their leachings usually carry measurable quantities of bicarbonate.

Increases in bicarbonate from the

single 2-ton inputs in the two soils were from 300 to 500 pounds against a 4109pound mean increase from the eight units that received the four 2-ton annual incorporations, as in groups 1 and 2 of Tables VI and VII. In every comparison, bicarbonate outgo from the slagged soil exceeded that from the correspondingly limestoned soil.

Upon assumption that like quantities of carbonate were engendered from the 20-ton inputs of slag in the upper zone and in full depth of the soils of groups 5 and 6 of Tables VI and VII, bicarbonate outgo from the upper zone of soil (group 6) was diminished substantially, as was total calcium outgo (Tables III and IV), through the stoppage in the lower zone of unslagged soil.

The bicarbonates that passed from the

chiefly from the portions of limestone that had not been decomposed by the soil. Only one unit of carbon dioxide was required to convert a unit of solid phase calcium carbonate into a bicarbonate solute, whereas two units of carbon dioxide in the much larger passages of bicarbonate were required for the engendering of each unit of calcium carbonate and sequential formation of solute carbonate from the slag, as indicated by the equation.

heavily limestoned soils probably came

$$\begin{array}{c} \mathrm{CaSiO_3} + 2\mathrm{H_2O} \rightarrow \\ \mathrm{Ca(OH)_2} + \mathrm{H_2O} + \mathrm{SiO_2} \quad (1) \end{array}$$

 $\begin{array}{ccc} Ca(OH)_2 \ + \ H_2 X \ \rightarrow \ CaX \ + \ 2H_2 O \ \rightarrow \\ sorbed \ (2) \end{array}$

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \rightarrow$$

precipitate (3)

 $\begin{array}{c} CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2 \rightarrow \\ solution \rightarrow outgo \quad (4) \end{array}$

The percentage of carbonate in a calcium-fortified soil at a given time will be governed by the degree of acidity that prevailed in the soil before the incorporation of the liming material; by rate, type, and sizing of the incorporated liming material; by the extent and periodicity of rainfall; by variations in biological activities under different seasonal conditions; and probably by geochemical "aging" in the interval between the incorporation and the sampling of the calcium-enriched soil. Where the acidoids and the carbon dioxide of a slagged soil system are in competition for the calcium hydroxide that is engendered through hydrolysis of the calcium silicate of the slag, the fate of small inputs of slag will be chiefly that of Equation 2, whereas Equations 3 and 4 represent what happens to those quantities of

Figure 3. Calcium leached, total and as bicarbonate, in 10 years From equivalent incorporations of silicate slag and limestone in Baxter silt loam. Full depth in groups 1-5; half depth in group 6

374 AGRICULTURAL AND FOOD CHEMISTRY

engendered hydroxide that do not undergo sorption directly by the soil acidoids.

The reaction indicated by Equation 2 is reversible through hydrolysis of the $CaX + 2H_2O \rightarrow Ca(OH)_2 + H_2X$ and may impart determinable quantities of bicarbonate to the soil leachings, as indicated by Equations 3 and 4 in sequence, even when analysis of the soil may show it devoid of solid phase carbonate. However, the calcium silicate of one phosphate furnace slag may undergo hydrolysis and carbonation readily, whereas another slag of like appearance may not. Moreover, the reactivity imparted through the quenching of the molten slag may be very different from the reactivity of the aircooled crystalline slag.

Induced Changes in Soil pH

After 10 years, a pH value of 6.3 was common to the four units of each of the Hartsells and Baxter soils that received the 2-ton incorporations (group 1 in Tables III and IV). In most cases, the final pH values induced by the two liming materials were virtually identical for the rational-rate incorporations. The eight corresponding units that received the four 2-ton-per-annum incorporations showed a pH mean of 7.7; the 5-ton incorporations of 4-mesh materials registered final pH values of 7.1 against respective values of 7.9 to 8.4 for the four 5-ton annual inputs, and the 20-ton single incorporations registered a mean pH value of 8.2.

Carbonate Residues

None of the 2-ton incorporations in the eight soil systems of group 1 (Table VIII) resulted in a carbonate residue. Although bicarbonate leachings accounted for as much as 65% of net outgo from

Table VI. Calcium Bicarbonate Outgo in 10-Year Rain-Water Leachings from Equivalent Incorporations of
 Limestone and Slag in Hartsells Fine Sandy Loam

	ł	Incorpora	$tions^a$		Annual Outgo, Pounds CaCO3 Equivalence per Acre, 2,000,000 Pounds of Soil									oil	Outgo	
Group	Materials	Mesh	Tons	No.	1	2	3	4	5	6	7	8	9	10	Total	Increose ^b
	None				53	98	81	79	169	113	91	88	132	169	1073	
1	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	1 1 1 1	71 56 72 66	200 161 198 165	146 129 144 140	146 148 150 151	176 184 203 182	163 148 135 143	106 103	111 104 101 106	165 158 158 162	186 184 176 178	1471 1378 1440 1399	398 305 367 326
2	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	4 4 4 4	58 61 75 63	363 342 512 447	485 824 508 1222	518 1008 589 939	524 803 650 801	376 632 598 639	326 505 501		396	501 520 622 428	3819 5632 4958 5839	2746 4559 3885 4766
3	Limestone Slag	4 4	5 5	1 1	98 91	311 355	368 397	417 353	431 323	353 352	271 267	206 213	311 308	366 302	3132 2961	2059 1888
4	Limestone Slag	4 4	5 5	4 4	93 103	460 1071	564 1010	555 954	595 1103	428 800	381 891	389 814	476 858	608 1058	4549 8662	3476 7589
5	Limestone Slag	100 100	20¢ 20¢	1 1	210 438	510 964	478 917	484 950	535 824	516 755	524 563	368 505	527 724	673 793	4825 7433	3752 6360
6	Slag Slag	100 100	20° 10°	1 1	73 67	307 259	369 290	335 256	465 332	609 418	502 291	517 222	693 462	768 545	4638 3142	3565 2069
	Rainfall, inc	ches			31.85	41.06	57.88	51.19	55.60	53.81	50.98	42.69	56.57	62.60	504.23	

^a Basis of $CaCO_3$ equivalence. Full-depth incorporations for groups 1-5; half-depth for group 6.

• Net losses in relation to inputs.

Soil undisturbed during 10 years.

Table VII. Calcium Bicarbonate Outgo, in 10-Year Rain-Water Leachings from Equivalent Incorporations of Limestone and Slag in Baxter Silt Loam

		Incorporat	tions ^a			Annual	Outgo, P	ounds Ca	CO3 Equ	ivalence	per Acr	e, 2,000	,000 Pa	unds of a	Soil	Outgo
Group	Materials	Mesh	Tons	No.	1	2	3	4	5	6	7	8	9	10	Total	Increase ^b
	None				39	80	72	91	160	106	90	85	129	150	1002	
1	Limestone	20	2	1	66	223	156	231	190	146	117	101	160	184	1574	572
	Slag	20	2	1	51	173	141	149	165	141	122	113	168	190	1413	411
	Limestone	100	2	1	61	205	141	161	186	145	125	118	174	193	1509	507
	Slag	100	2	1	56	175	121	169	199	146	114	116	179	197	1472	470
2	Limestone	20	2	4	53	456	415	562	551	447	459	435	489	536	4403	3401
	Slag	20	2	4	55	350	705	942	789	595	515	512	467	548	5478	4476
	Limestone	100	2	4	59	495	533	567	669	509	500	426	496	603	4857	3855
	Slag	100	2	4	63	537	1000	916	820	783	559	464	449	598	6189	5187
3	Limestone	4	5	1	71	329	315	442	363	374	328	260	316	408	3206	2204
	Slag	4	5	1	116	473	442	331	459	352	307	279	344	448	3551	2549
4	Limestone	4	5	4	79	431	458	496	577	531	412	444	475	638	4541	3539
	Slag	4	5	4	110	856	733	830	995	850	762	705	686	886	7413	6411
5	Limestone	100	20°	1	135	435	524	41 6	465	474	356	302	459	609	4175	3173
	Slag	100	20°	1	501	847	884	912	750	691	676	452	650	960	7323	6321
6	Slag	100	20°	1	67	194	366	366	531	551	498	449	609	845	4476	3474
	Slag	100	10°	1	46	131	287	277	382	514	448	319	492	710	3606	2604
	Rainfall, in	ches			31,85	41.06	57.88	51.19	55.60	53.81	50.98	42.69	56.57	62,60	504,23	

^a Basis of CaCO₃ equivalence. Full-depth incorporations for groups 1-5; half-depth for group 6.

^b Net losses in relation to inputs.

Soil undisturbed during 10 years.

the four 2-ton annual incorporations in the corresponding slagged systems of the two soils of group 2 (Table VIII), the carbonate residues from the slag were small. The largest residual occurrence of calcium carbonate from the four 2-ton annual incorporations of 100-mesh slag was the one of only 700 pounds in the Hartsells soil (Table VIII), as the ultimate result from two phenomena—soil fixation of calcium of the slag and the leachings of biologically induced solutes of calcium.

Although outgo of bicarbonate from each slag input in group 3 of Tables VI and VII was larger than the bicarbonate outgo from its limestone equivalent, there were no accumulations of calcium carbonate from the two slagged soils, as detailed under "increase engendered" in Table VIII.

In both soils, maximal residues of slagderived carbonate were those engendered from the 20-ton inputs of the 100mesh separate. Respective combinations of the 16,600-pound and 17,500pound "soil carbonate, increases engendered" and the corresponding 10,706pound and 10,049-pound leachings of calcium carbonate account for aggregates of 27.306 and 27,549 pounds of slag-derived calcium carbonate from the 20-ton full-depth inputs of slag in Hartsells and Baxter soils (Table VIII). These aggregates are equivalent to 68.3 and 68.9% of the calcium carbonate potential of the incorporated 20-ton input of slag, but they do not include the calcium carbonate equivalences of the calcium that effected displacements of hydrogen ions in the two soils. Upon the basis of difference between the decomposition of the incorporated limestone and the leachings therefrom, it appears that the replacement of Ca⁺⁺ for 2H⁺ accounted for 8612 and 8770 pounds of calcium carbonate in the Hartsells and Baxter soils, respectively. In case of equal replacement of hydrogen by the calcium of the slag. the silicate transitions of 68.3 and 68.9% are raised to 89.8 and 90.8% for Hartsells and Baxter soils, respectively.

Effects of Silicate Calcium upon Outgo of Other Soil Components

The 10-year leachings of seven elements from the six groups of the experimentally slagged and limestoned units of each soil are given in Table IX.

Magnesium outgo was lessened from every soil system of the 32 units into which calcium had been incorporated and the repressions of leachings of magnesium were accentuated by the larger rate incorporations of both liming materials.

Potassium outgo from stores native to the soil was repressed by every incorporation of each liming material. Repressions of potassium outgo were accentuated by the larger incorporations of both limestone and slag; but the repressive effects exerted by the larger incorporations of slag were offset somewhat by the quantities of potassium those incorporations brought to the soil—up to 109 pounds of K_2O per acre.

The invariable repression in the outgo

of potassium in the rain-water leachings from the slagged and limestoned soils are in accord with findings obtained many times at this station and at the Virginia station (20). But, as noted by Kelley (4), the purported opposite effect is still a contention. In recent bulletins from those two stations (20), an attempt was made to rationalize the potassium repressions into a base interchange concept that an incorporation of an alkaline calcic, magnesic, or dolomitic material will cause a decrease in the quantity of potassium that a soil will yield to its rain-water drainage.

Fluorine in Drainage Waters

The behavior and leachability of the fluorine of the incorporated slag are distinctive from the behavior of the fluorine of corresponding incorporations of calcium fluoride and other fluorides (8, 9). The mean increase in 10-year outgo of fluorine from the 2-ton incorporations of slag (group 1 of Table IX) was only 31 pounds per acre, whereas mean increases of 511 and 427 pounds in the outgo of fluorine were induced by the four 2-ton annual incorporations (group 2) in the Hartsells and Baxter soils, respectively.

The largest outgo of fluorine was that of 810 pounds, which passed from the 20-ton full-depth incorporation of slag in the Hartsells soil and represented 80%of the quantity carried by the slag. In case the 810-pound leachings had been made to pass through an underlying stratum of untreated soil or subsoil, the

Table VIII. Relationships of Net Total Leachings of Calcium to Proportions Leached as Calcium Carbonate from Equivalent Inputs of Limestone and Slag and to Final Soil Carbonate Content

						(Dec	reases a	or increa	ases after 1	0 years)						
						Ha	rtsells Fi	ne Sanc	ly Loam				Baxter	Silt Lo	am	
					N	let Outg	o of Ca				Ν	let Outg	o of Ca			
							Carb	onate	Soil Carb	onate, Lb.			Carbo	onate	Soil Carb	onate, Lb
	Inc	orporotic	onsa	<u> </u>	Total,	Of input,	As such,	Of input,	Decrease from	Increase engen-	Total,	Of input,	As such,	Of input,	Decrease from	Increase engen-
Group	Materials	Mesh	Tons	No.	ΙЬ.	%	ΙЬ.	%	input	dered	ΙЬ.	%	ΙЬ.	%	input	dered
1	Limestone	20	2	1	1966	49	398	9	4,000		2102	53	572	14	4,000	
	Slag	20	2	1	2084	52	305	8		0	2082	52	411	10		С
	Limestone	100	2	1	2262	57	367	9	4,000	• • •	2121	53	507	13	4,000	
	Slag	100	2	1	2115	53	326	8	• • •	0	2231	56	470	12	• • •	0
2	Limestone	20	2	4	5901	37	2746	17	12,300		6017	38	3401	21	12,000	
	Slag	20	2	4	8986	56	4559	30		200	8282	52	4476	28		400
	Limestone	100	2	4	7221	45	3885	24	14,200		6641	42	3855	24	13,500	• • •
	Slag	100	2	4	9448	59	4766	30	• • •	700	9065	57	5187	32		600
3	Limestone	4	5	1	4787	48	2059	21	9,400		4579	46	2204	22	9,200	
	Slag	4	5	1	4774	48	1888	19		0	5218	52	2549	25		C
4	Limestone	4	5	4	6959	17	3476	9	17,400		6370	16	3539	9	14,900	
	Slag	4	5	4	13053	33	7589	19		8,100	10554	26	6411	16		8,500
5	Limestone	100	20%	1	7088	18	3752	9	15,700		6430	16	3173	8	15,200	
	Slag	100	20 ^b	1	10706	27	6360	16	· • •	16,600	10049	25	6521	16	• • •	17,500
	Slag	100	20^{b}	1	6687	17	3565	9		18,250	5778	14	3474	9		19,950
	Slag	100	105	1	5289	26	2069	5		5,500	4551	23	2604	13		6,500

^a Per 2,000,000 pounds of soil, moisture-free basis; full-depth incorporations for groups 1-5; half-depth for group 6.

^b Soil undisturbed during 10 years.

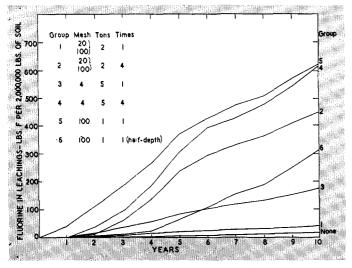


Figure 4. Fluorine leachings in 10 years

From Hartsells fine sandy loam after incorporations of quenched calcium silicate slag of three finenesses and at several rates (Table IX)

concentration of solute fluorides would have been decreased by half. Such stoppage was registered by the differences between the leachings of fluorine from the 20-ton incorporations of slag at the two depths in both soils, as in groups 5 and 6 of Table IX. The high concentrations of fluorides in the leachings from the heavily slagged soils were accompanied by large increases in the outgo of solvated silica and calcium solutes. Because the simple fluoride (CaF_2) does not leach from the soil so readily (8, 9), it appears that the large outgo of fluorine from the slagged soils is attributable to leachings of calcium silicofluoride (CaSiF₆) (11). In case the fluorine and phosphorus contents of the slag are in combinations with silica, before and/or after the slag undergoes disintegration in the soil, a plausible explanation follows as to why the occurrences of fluorine and phosphorus in the rain-water leachings from the slag were so much greater than the occurrences of those two elements in the leachings from jointly incorporated calcium fluoride and calcium phosphate in related experiments (8, 9).

When the reported findings and results are integrated with those obtained in related experiments, it is concluded that rational-rate incorporations of the quenched calcium silicate slag under study would not impart harmful concentrations of fluorides in the drainage waters from the "heavy" types of soils. Moreover, incorporations of that slag at economic rates do not cause an abnormal content of fluorine in resultant crops (6, 12, 13, 15).

Summary

A readily hydrolyzable phosphate furnace slag and limestone were compared in a 10-year lysimeter experiment as to fineness, rates, single and repeated inputs, and depth of incorporation in two major soils. Rainwater increments and leaching effects upon exchangeable bases, exchange capacities, and soil pH values were determined.

After 10 years, the eight systems that received single 2-ton full-depth incorporations of 20- and 100-mesh slag and limestone had lost half of the calcium input, a fifth of the outgo being calcium bicarbonate, were devoid of calcium carbonate, and had pH values of 6.3.

The three additional annual inputs of 2 tons in the two soils caused 3- to 4-fold increases in calcium, half of the increases being bicarbonates, and leachings of calcium from slag-engendered carbonate were far greater than those from the corresponding inputs of limestone. The four systems that received four 2-ton incorporations of 20- and 100-mesh slag contained slag-derived calcium carbonate residues of only 200 to 700 pounds per acre, although those systems had yielded 4.5 tons of calcium carbonate to the 10-year drainage.

The repetitive incorporations and larger inputs of both liming materials caused further increases in calcium outgo, the leachings of calcium from the larger inputs of the slag being substantially greater than those from the equivalent inputs of limestone.

Because of sorption and leachings of the calcium from the slag of the 5-ton inputs of 4-mesh slag, there were no accumulations of calcium carbonate, as indicated in the eleventh column of Table VIII, although those inputs had yielded almost 2.5 tons of calcium carbonate to the leachings from each soil, half of each total outgo being bicarbonate.

In the initial year, the largest leachings of calcium were from the full-depth 20ton incorporations of 100-mesh slag; but the four 5-ton annual inputs of 4-mesh slag gave largest 10-year outgo from both soils.

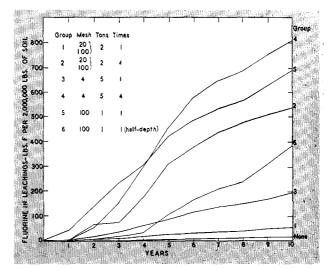


Figure 5. Fluorine leachings in 10 years From Baxter silt loam after incorporations of quenched calcium silicate slag of three finenesses and at several rates (Table IX)

Total and bicarbonate leachings of calcium from undisturbed soils that received 20-ton full-depth incorporations of 100-mesh slag were almost twice the leachings from the corresponding incorporations at half-depth.

In 10 years sorption and leaching jointly caused a mean decrease of 15,450 pounds of calcium carbonate from the 20-ton incorporations of limestone in the two soils, against which were gains of 17,050 and 19,100 pounds of calcium carbonate from the equivalent incorporations of slag in full depth and in the upper half of soil.

Final pH values for the eight systems that received single 2-ton incorporations of slag and limestone were 6.3; for the 5-ton incorporations of the 4-mesh materials, 7.1 in the two; and for the repetitive and heavy-rate incorporations, from 7.7 to 8.4.

Magnesium and potassium appearances in the drainage waters were repressed by all incorporations of slag and of limestone in both soils. The repressions exerted by the 20-ton inputs in the twelve units of groups 4, 5, and 6 were especially significant (Table IX). Because of the offsetting effect of its content of potassium, the slag appeared to be less repressive than limestone upon outgo of that element.

Nitrate leachings and sulfate outgo were increased by the inputs of both liming materials. In all cases, the larger outgo of sulfates was induced by the slag, each ton of which contained 5.8 pounds of sulfur.

The occurrences of fluorine and phosphorus in the incorporated slag were reflected by the enhancements in leachings from slagged soils. Largest outgo of fluorine was the 810-pound leaching from the four annual 5-ton incorporations of 4-mesh slag in Hartsells soil, and represented a 52% recovery of the quantity carried by the four 5-ton inputs. The

VOL. 1, NO. 5, MAY 27, 1953 377

mean outgo of fluorine from the 20-ton upper-zone incorporations of 100-mesh slag was only 53% of the outgo from corresponding full-depth incorporations.

Incorporated slag yielded calcium hydroxide readily and fractions not sorbed directly by the soil then were converted to calcium carbonate, up to an engendered residue of 19,950 pounds; proved more reactive than the limestone; was leached sooner and to greater extent; registered less repression than limestone upon outgo of potassium and magnesium; imparted some of its phosphorus content to the drainage waters; and yielded relatively small outgo of fluorine from the rational-rate inputs. However, the 10 years' drainage from the 20ton incorporations yielded up to 53% of their 1524-pound content of fluorine.

Because of the porosity and particulate nature of the slag, its larger particles proved more reactive than limestone of decided fineness.

Conclusions

Comparable effects were induced by the calcium of rational-rate incorporations of phosphate furnace slag and limestone, but decidedly different effects ensued when equivalent quantities of the two materials were compared by means of repetitive incorporations and by single inputs at heavy rates.

Although the repetitive and the large single inputs of slag yielded calcium leachings decidedly greater than those from the limestone, there were substantial cumulations of slag-derived calcium carbonate.

The findings indicate that rationalrate incorporations of a good quenched phosphate furnace slag can be utilized effectively as an economic liming material without qualification other than that it be incorporated, and its use will not cause detrimental concentrations of fluorine in the waters of nearby wells and streams.

Acknowledgment

The 10-year findings were obtained through collaboration between the Chemistry Department of The University of Tennessee Agricultural Experiment Station and Divisions of Agricultural Relations and Chemical Engineering of Tennessee Valley Authority. Acknowledgment is accorded Jack Thompson and George Palmer, former assigned employees of TVA, for their contributions to the study in its early years, to J. Bruce Young for rain-water analyses, and to W. M. Shaw for the data of Table I.

Literature Cited

- (1) Assoc. Official Agr. Chemists, "Methods of Analysis," 7th ed., 1950.
- (2) Harris, H. C., MacIntire, W. H., Comar, C. L., and Shaw, W. M., Soil Sci., 73, 289-98 (April 1952),
- (3) Harris, H. C., MacIntire, W. H., Comar, C. L., Shaw, W. M., Winterberg, S. H., and Hood,
- S. L., Science, 113, 328-9 (1951).
 (4) Kelley, W. F., "Cation Exchange in Soils," ACS Monograph 109, pp. 106-9, New York, Reinhold
- Publishing Corp., 1948.
 (5) MacIntire, W. H., Hardin, L. J., and Oldham, F. D., Ind. Eng. Chem., 28, 48-57 (1936).

- (6) MacIntire, W. H., Hardin, L. J., Winterberg, S. H., and Ham-mond, J. W., Soil Sci., 50, 219–37 (1940).
- MacIntire, W. H., and Shaw, W. M., Science, 104, 3-4 (1946).
 MacIntire, W. H., Shaw, W. M., and Robinson, B., Soil Sci., 67, 377, 04 (1940). 377-94 (1949)
- (9) MacIntire, W. H., Shaw, W. M., Robinson, B., and Sterges, A. J., *Ibid.*, **65**, 321–41 (1948). (10) MacIntire, W. H., Shaw, W. M.,
- (10) Machine, W. H., B., J. AG. FOOD Снем., 1, 56 (1953).
 (11) MacIntire, W. H., and Sterges, A. J., Soil Sci., 74, 233–47 (1952).
- (12) MacIntire, W. H., and Winterberg, S. H., Univ. Tenn. Agr. Expt. Sta., Bull. 184 (March 1943). (13) MacIntire, W. H., Winterberg,
- S. H., and Clements, L. B., Soil Sci. Soc. Am. Proc., 10, 71-80 (1945).
- (14) MacIntire, W. H., Winterberg, S. H., Dunham, H. W., and Clements, L. B., Soil Sci., 61, 295-311 (1946).
- (15) MacIntire, W. H., Winterberg, S. H., Hardin, L. J., Sterges, A. J., and Clements, L. B., Soil Sci. Soc. Am. Proc. 12, 145-52 (1947).
- (16) MacIntire, W. H., and Young, J. B., Soil Sci., 15, 205-27 (1923).
 (17) Shaw, W. M., J. Assoc. Offic. Agr. Chemists, 28, 310-35 (1945).
 (18) Ibid., 31, 715-28 (1948).
 (19) Ibid. 32, 437-52 (1949).

- (16) *Ibid.*, **32**, 437–52 (1949).
 (20) Shaw, W. M., and MacIntire, W. H., Univ. Tenn. Agr. Expt. Sta., *Bull.* **212** (July 1949).

Received for review April 6, 1953. Accepted May 5, 1953.

Table IX. Ten-Year Outgo of Calcium, Magnesium, Potassium, Phosphorus, Sulfur, Nitrogen, and Fluorine from Equivalent Incorporations of Limestone and Slag^a

								(Pound	ds per a	cre)								
	Inc	orporatio	nsa			From	Hartse	ells Fine	Sandy L	oam				From B	axter Si	lt Loam		
Group	Materials	Mesh	Tons	No.	Ca	Mg	ĸ	Р	S	N	F	Ca	Mg	К	P	S	N	F
	None				803	201	55	1.0	534	355	14	795	227	119	0.6	564	394	14
	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	1 1 1	1591 1638 1709 1650	143 156 147 161	29 34 32 30	0.8 1.2 0.9 1.3	580 614 601 646	458 487 530 506	18 48 17 52	1636 1628 1644 1688	182 179 177 188	99 92 100 84	0.6 0.7 0.7 1.0	622 655 644 655	560 531 566 526	15 36 13 43
	Limestone Slag Limestone Slag	20 20 100 100	2 2 2 2	4 4 4 4	3167 4402 3695 4587	100 104 85 121	24 30 18 30	1.1 2.1 1.0 2.3	628 697 666 730	669 652 622 623	25 529 26 542	3204 4111 3454 4424	151 128 133 150	71 7 4 67 70	0.8 1.3 0.8 1.4	694 744 669 748	586 592 580 572	22 452 18 446
3	Limestone Slag	4 4	5 5	1 1	2720 2715	128 123	20 24	1.0 1.2	621 635	628 560	22 190	2628 2884	151 155	72 83	0.7 0.7	664 712	571 530	22 172
4	Limestone Slag	4 4	5 5	4 4	3590 6031	99 98	16 41	1.1 3.6	674 760	693 687	23 810	3345 5021	139 113	72 82	0.9 1.9	694 759	596 632	17 618
5	Limestone Slag	100 100	20 ^b 20 ^b	1 1	3642 5091	42 73	19 45	1.0 3.6	659 692	664 482	24 687	3369 4818	72 116	67 79	1.0 4.3	678 720	614 494	22 627
6	Slag Slag	$\begin{array}{c} 100 \\ 100 \end{array}$	20 ^b 10 ^b	1 1	3481 2922	87 80	30 27	0.8 0.8	712 733	583 613	383 279	3108 2617	147 125	77 58	0.9 0,6	701 636	508 410	315 222
	Mean of variations ^{c} d						- 32 - 22	0 +2.2	+99 +148	$^{+254}_{+216}$		• •	$-84 \\ -28$	-44 -38			$\substack{+188\\+160}$	

^a In CaCO₃ equivalence per acre, 2,000,000 pounds of soil, m.f. basis.

^b Soil undisturbed 10 years.

• In 10-year totals for full-depth groups 1-5.

^d Effects induced by limestone.

^e Effects induced by slag.